Few-Shot Scene Adaptive Crowd Counting Using Meta-Learning

Overview

Traditional Models: They require large number of labeled data to achieve a successful model. However, for application like crowd counting, collecting large amount of labeled data or annotating every camera images is expensive, or cumbersome.

Meta-learning: It enables to exploit the adaptable scene representation to learn a new camera scene (task) with limited data.

Problem Setup

Top row: During training, we have access to a set of N different camera scenes where each scene comes with M labeled examples. From such training data, we learn the model parameters θ of a mapping function f_{θ} such that θ is generalizable across scenes in estimating the crowd count.

Bottom row: Given a test (or target) scene, we assume that we have a small number of K labeled images from this scene, where $K \ll M$ (e.g., $K \in \{1, 5\}$) to learn the scene-specific parameters $\tilde{\theta}$. With the help of meta-learning guided approach we quickly adapt f_{θ} to test scene specific parameters $f_{\tilde{\theta}}$ that predicts more accurate crowd count than other alternative solutions.

Few-shot Scene Adaptive Crowd Counting

Inner update:

$$\tilde{\theta}_i = \theta - \alpha \nabla_\theta \mathcal{L}_{\mathcal{T}_i}(f_\theta)$$

where
$$\mathcal{L}_{\mathcal{T}_i}(f_{\theta}) = \sum_{(x^{(j)}, y^{(j)}) \in D_i^{train}} \|f_{\theta}(x^{(j)}) - y^{(j)}\|_F^2$$

$$\mathcal{L}_{\mathcal{T}_i}(f_{\tilde{\theta}_i}) = \sum_{(x^{(j)}, y^{(j)}) \in D_i^{test}} \|f_{\tilde{\theta}_i}(x^{(j)}) - y^{(j)}\|_F^2$$

Mahesh Kumar Krishna Reddy[†], Mohammed Asiful Hossain[‡], Mrigank Rochan[†], and Yang Wang[†]

[†]Department of Computer Science, University of Manitoba [‡] Huawei Technologies Co. Ltd.

Meta-learning comparison results between different optimization based approaches [2, 3]

