
Scene Adaptive Crowd Counting

by

Mahesh Kumar Krishna Reddy

A thesis submitted to

The Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements

of the degree of

MASTER OF SCIENCE

Department of Computer Science

The University of Manitoba

Winnipeg, Manitoba, Canada

April 2020

Copyright c� 2020 by Mahesh Kumar Krishna Reddy

Thesis advisor Author

Dr. Yang Wang Mahesh Kumar Krishna Reddy

Scene Adaptive Crowd Counting

Abstract

We consider the problem of scene adaptive crowd counting. Given a target cam-

era scene, our goal is to adapt a model to this specific scene with only a few la-

beled/unlabeled images. The solution to this problem has potential applications in

numerous real-world scenarios that require deploying a crowd counting model spe-

cially adapted to a target camera. In this thesis, we propose two novel methods for

scene adaptive crowd counting. First, inspired by the recently introduced learning

to learn paradigm in the context of few-shot regime, we aim to learn the parameters

of a crowd counting model in a way to facilitate fast adaptation to the target scene.

Second, we introduce a new problem called unlabeled scene adaptive crowd counting.

More specifically, we propose to use few unlabeled images from the target scene to

perform the adaptation. We introduce a novel AdaCrowd framework to solve this

problem and it consists of a crowd counting network and a guiding network. The

guiding network predicts some parameters in the crowd counting network based on

the unlabeled images from a particular scene. This allows our model to adapt to

di↵erent target scenes. The experimental results on several challenging benchmark

datasets demonstrate the e↵ectiveness of our two proposed approaches.

ii

Contents

Abstract . ii
Table of Contents . iv
List of Figures . v
List of Tables . vii
Acknowledgments . ix
Dedication . x
Publications . xi

1 Introduction 1

1.1 Contributions . 4
1.2 Thesis Organization . 5

2 Related Work 7

2.1 Crowd Counting . 7
2.1.1 Labeled Scene Adapative Crowd Counting 7
2.1.2 Unlabeled Scene Adaptive Crowd Counting 8

2.2 Domain Adaptation . 9
2.3 Few-Shot Learning . 10

3 Few-Shot Scene Adaptive Crowd Counting using Meta-Learning 12

3.1 Problem Setup . 12
3.2 Our Approach . 14
3.3 Experiments . 17

3.3.1 Datasets and Setup . 17
3.3.2 Baselines . 20
3.3.3 Experimental Results . 20

4 AdaCrowd: Unlabeled Scene Adaptive Crowd Counting 26

4.1 Problem Setup . 26
4.2 Our Approach . 29

4.2.1 Crowd Counting Network with Guided Batch Normalization . 30

iii

iv Contents

4.2.2 Crowd Counting Network . 33
4.2.3 Guiding Network . 33

4.3 Learning and Inference . 35
4.4 Experiments . 37

4.4.1 Datasets and Setup . 37
4.4.2 Baselines and Backbone Architectures 39
4.4.3 Experimental Results . 41

5 Conclusion and Future Work 45

Bibliography 47

List of Figures

1.1 Illustration of our problem setting. (Top row) During training, we have
access to a set of N di↵erent camera scenes where each scene comes
withM labeled examples. From such training data, we learn the model
parameters ✓ of a mapping function f✓ such that ✓ is generalizable
across scenes in estimating the crowd count. (Bottom row) Given a
test (or target) scene, we assume that we have a small number of K
labeled images from this scene, where K ⌧ M (e.g., K 2 {1, 5}) to
learn the scene-specific parameters ✓̃. With the help of meta-learning
guided approach we quickly adapt f✓ to f

✓̃
that predicts more accurate

crowd count than other alternative solutions. 2
1.2 Illustration of the unlabeled scene-adaptive crowd counting problem.

(Top row) Our training data consists of images and labels collected
from N di↵erent scenes. (Botton row) During testing, we are given
some unlabeled image (z) from a new target scene. Our goal is to
produce a crowd counting model specifically adapted to this target
scene to predict crowd count on the given test images. Unlike the
few-shot adaptation in [1, 2], our problem setup does not require any
labeled images from the target scene for adaptation. 4

3.1 An overview of the main components of our model. (a) Meta-training

stage on Dmeta�train. The meta-training involves optimizing an inner-
update over each scene and an outer-update across di↵erent scenes.
(b) Backbone crowd counting network. We use the CSRNet [3] as
the backbone architecture. It comprises of a feature extractor and a
density map estimator. (c) Meta-testing on Dmeta�test. We adapt the
trained meta-model with ✓ to a new target scene by fine-tuning on K

images from this scene and test on other images from this scene. . . . 13

v

vi List of Figures

3.2 Quantitative results of the learning curve during meta-testing. The
graph (a) shows the learning for Scene 2 and (b) shows the result for
Scene 3 inWorldExpo [4] test sets, respectively. Similarly, (c) shows the
learning on UCSD [5]. Note that our approach continues to learn and
achieves a lower MAE compared to the baseline fine-tuning approach
in ten gradient steps. We consider K = 5 labeled examples in all three
cases. 23

3.3 Crowd counting performance comparison between the baselines and
our approaches in di↵erent scene-specific images fromWorldExpo’10 [4]
dataset. The labels include, (a) K = 1 in Scene 2, (b) K = 5 in Scene
2, (c) K = 1 in Scene 3, (d) K = 5 in Scene 3, (e) K = 1 in Scene 5
and (f) K = 5 in Scene 5. Note that our approaches outperform the
baselines in di↵erent settings and is robust to varying crowd density. . 24

4.1 Illustration of our AdaCrowd framwork. (Top row) The crowd count-
ing network takes an input image and estimates the density map.
The crowd counting network has P number of GBN blocks with the
proposed guided batch normalization (GBN) layers. The parameters
� = {�, �} for all the GBN layers are predicted from another neural
network called the guiding network. (Bottom row) The guiding net-
work takes the unlabeled image (z) from the training scene and pro-
duces GBN parameters specifically adapted to that scene. Through
these scene adapted GBN parameters, our model achieves adaptation
to di↵erent scenes. 30

4.2 Overview of a GBN block in the AdaCrowd framework. For instance,
given an input x to the GBN layer in GBN Block p, we first normalize
x along the channel dimensions in the GBN layer. We then use the
a�ne transformation parameters �p

d
and �

p

d
corresponding to the p-

th GBN block to uniformly scale and shift the activation features to
generate the output x̂. The a�ne parameters are generated by the
guiding network based on the scene-specific unlabeled data z. 32

4.3 Qualitative results of our approach on di↵erent datasets. We visualize
the density maps and show both ground-truth and predicted count at
the top-left corner of each image. 42

4.4 We present the ablation study on the relation between network perfor-
mance and number of training scenes on WorldExpo’10 dataset with
CSRNet and ResNet SFCN architectures. 43

4.5 We provide an overview of some failure cases caused by drastic changes
in the target scene images due to illumination, occlusion or image qual-
ity. Nevertheless, our approach still performs better than alternative
methods in these cases. 43

List of Tables

3.1 Results on WorldExpo’10 [4] test set with K = 1 and K = 5 train
images in the targe scene. We report the performance our our approach
with and without ROI. We also compare with three baselines Baseline
pre-trained, Baseline fine-tuned and Meta pre-trained. We compare the
results across 5 test scenes and the last two rows represent the average
score for our models. 21

3.2 Results on the Mall [6] dataset with K = 1 and K = 5 images in the
target scene. The meta-training is performed on the WorldExpo’10
training data. 21

3.3 Results on the UCSD [5] dataset with K = 1 and K = 5 images in
the target scene. The meta-training is performed on the WorldExpo’10
training data. 22

3.4 Comparison of results on the WorldExpo’10 [4] dataset with K = 1
images in the target scene with Hossain et al. [1]. We use the standing
train/test split on WorldExpo’10. Our approach outperforms Hossain
et al. [1]. 23

3.5 The overall results for adaptation on WorldExpo’10 [4] test set, Mall [6]
and UCSD [5] with K = 1 and K = 5 train images. We compare with
other optimization based meta-learning approaches “Reptile” [7] and
“Meta-LSTM” [8]. 25

4.1 Quantitative results for training and testing on WorldExpo’10. We re-
port results using di↵erent backbone architectures. “Ours” correspond
to using one unlabeled image z. The results for our approach show the
mean and standard deviation (%) over 5 random trials. We show the
best results in bold. 40

vii

viii List of Tables

4.2 Quantitative results for the cross-dataset testing for one unlabeled im-
age. We train WorldExpo’10 and test on Mall, PETS, and FDST. We
show results of di↵erent backbone networks and report mean and stan-
dard deviation (%) of our models over 5 random trials. We show the
results in bold. 41

4.3 Comparison of our approach with 1 vs. 5 inputs (unlabeled image) by
training and testing on WorldExpo’10. In all the cases, the results of
using 5 inputs are slightly better than using 1 input. We report the
mean and standard deviation (%) for all the methods. 42

Acknowledgments

First and foremost, I wish to convey my appreciation to my advisor Dr. Yang

Wang for the unrelenting encouragement and mentoring. Also, it is an honor to have

Dr. Carson Kai-Sang Leung and Dr. Ekram Hossain on my thesis committee and for

their invaluable suggestions in perfecting my thesis.

I am truly grateful to Dr. Yang Wang for the financial assistance and continuous

motivation throughout my journey which was vital to the completion of my thesis. I

would like to extend my thanks to the support sta↵ in the Department of Computer

Science for their help.

I wish to express my gratitude to all the amazing lab mates for the lively discus-

sions, constructive feedback, and collaborations.

Last but not the least, I am truly in debt to my family for providing me the

opportunity to pursue my field of interest and for being the pillars of strength.

ix

This thesis is dedicated to my parents and my sister

for their unconditional love and endless support.

x

Publications

Some of the ideas, materials and figures in this thesis have appeared previously in

the following publications and submitted manuscripts:

1. Mahesh Kumar Krishna Reddy, Mohammad Hossain, Mrigank Rochan and

Yang Wang. Few-shot Scene Adaptive Crowd Counting using Meta-Learning. The

IEEE Winter Conference on Applications of Computer Vision (WACV), Snowmass

Village, USA, March 2020.

2. Mahesh Kumar Krishna Reddy, Mrigank Rochan, Yiwei Lu and Yang Wang.

AdaCrowd: Unlabeled Scene Adaptive Crowd Counting. The European Conference

on Computer Vision (ECCV), Glasgow, Scotland, 2020. (Under review)

xi

Chapter 1

Introduction

Crowd counting is a problem of determining the number of people present in

a surveillance camera image. The research on crowd counting [3, 4, 9, 10, 11] is

drawing increasing attention in computer vision lately. The key reason for this surge

in interest is the demand for automated complex crowd scene understanding that

appears in computer vision applications such as surveillance, tra�c monitoring, etc.

Although the contemporary methods for crowd counting are promising, they have

some significant limitations. One main limitation of existing methods is the di�culty

in adapting to a new crowd scene. This is because these methods typically require

a large number of labeled training data which is expensive and time-consuming to

obtain.

In this thesis, we analyze the above-mentioned limitation of existing crowd count-

ing methods in two scene adaptive crowd counting problems. First, we consider the

few-shot scene adaptive crowd counting similar to [1]. During training, we have access

to a set of training images from di↵erent scenes (e.g., each scene might correspond to

1

2 Chapter 1: Introduction

Figure 1.1: Illustration of our problem setting. (Top row) During training, we have
access to a set of N di↵erent camera scenes where each scene comes with M labeled
examples. From such training data, we learn the model parameters ✓ of a mapping
function f✓ such that ✓ is generalizable across scenes in estimating the crowd count.
(Bottom row) Given a test (or target) scene, we assume that we have a small number
of K labeled images from this scene, where K ⌧ M (e.g., K 2 {1, 5}) to learn
the scene-specific parameters ✓̃. With the help of meta-learning guided approach we
quickly adapt f✓ to f

✓̃
that predicts more accurate crowd count than other alternative

solutions.

one specific camera installed at one particular location). During testing, we have a

new target crowd scene to which we want to adapt our model. Moreover, we consider

that we have a small number (e.g., 1 or 5) of labeled images from this target scene.

During training, we learn optimal (generalizable) model parameters from multiple

scene-specific data by considering few-labeled images per scene. During testing, we

consider the learned parameters to be a good initial point to adapt to a specific new

scene. To be precise, we aim at learning the generalizable model parameters in a

fashion that it produces more accurate performance when adapting to a new target

scene with few gradient descent steps provided only a few labeled images from the

target scene. Figure 1.1 shows an illustration of the few-shot scene adaptive problem.

Chapter 1: Introduction 3

We address the proposed few-shot crowd counting problem using meta-learning [12]

that is capable of fast adaptation to new camera scenes.

Second, in comparison with the standard supervised setting, the few-shot scene

adaptation setup in [1, 2] brings crowd counting closer to real-world deployment.

However, this setup still has some limitations. First of all, it still requires at least

one labeled image from the end-user. Although it has drastically reduced the data

requirement compared with the supervised case, it is still a burden for the end-user.

Second, when deploying to the target scene, the scene adaptation method in [1, 2]

involves fine-tuning several layers of a CNN model. This requires running gradient

updates and backpropagation through the network for several iterations. In practice,

the computation requirement is still too high for typical surveillance cameras with

limited computing capabilities.

Inspired by [1, 2], we push the envelope even further by proposing a new problem

called Unlabeled Scene Adaptive Crowd Counting. Similar to [1, 2], our objective is to

have a model adapted to a specific target scene during deployment. But di↵erent from

[1, 2], we do not require any labeled images from the target scene. Our adaptation

method only requires one or more unlabeled images from the target scene for adapta-

tion (see Fig. 1.2). Since unlabeled images are fairly easy to collect in practice, this

problem setup greatly reduces the data annotation e↵ort from the user. Besides, our

proposed approach also significantly reduces the required computation during adap-

tation. It only involves some feed-forward computation without backpropagation.

We call our model AdaCrowd. It consists of two neural networks: a crowd count-

ing network and a guiding network. The crowd counting network has some parame-

4 Chapter 1: Introduction

Figure 1.2: Illustration of the unlabeled scene-adaptive crowd counting problem. (Top
row) Our training data consists of images and labels collected from N di↵erent scenes.
(Botton row) During testing, we are given some unlabeled image (z) from a new target
scene. Our goal is to produce a crowd counting model specifically adapted to this
target scene to predict crowd count on the given test images. Unlike the few-shot
adaptation in [1, 2], our problem setup does not require any labeled images from the
target scene for adaptation.

ters that will be adapted to each scene. The guiding network is learned to map the

unlabeled images to the adaptable parameters in the crowd counting network. The

parameters of these two networks are learned in a way that allows e↵ective adaptation

to a new scene using only unlabeled images from that scene.

1.1 Contributions

The contributions presented in this thesis are:

• We propose a meta-learning inspired approach to solve the few-shot scene adap-

tive crowd counting problem. Using the meta-learning, the model parameters

are learned in a way that facilitates e↵ective fine-tuning to a new scene with

Chapter 1: Introduction 5

a few labeled images. Previous work [1] uses a fine-tuning approach to this

problem. The limitation of this fine-tuning approach is that it can only update

certain layers that are closer to the output in the decoder to a target scene. In

contrast, our approach does not have such limitations and can be used to adapt

any parameters in the decoder. Second, we perform a thorough evaluation of

the performance of our proposed approach on several benchmark datasets and

show that the method outperforms other alternative baselines. Our approach

also surpasses the fine-tuning approach [1].

• We present a new problem called unlabeled scene adaptive crowd counting.

Di↵erent from the few-shot adaptation setup in [1, 2], our problem formulation

only uses unlabeled images from the target scene for adaptation. We develop

an approach termed as AdaCrowd for learning the model parameters so that

they can e↵ectively adapt to a new scene given the unlabeled images from that

scene without fine-tuning at test time.

1.2 Thesis Organization

We organize the remainder of this thesis as follows. First, in Chapter 2, we give

an overview of the related works. More specifically, in this chapter, we discuss various

crowd counting, domain adaptation, and few-shot learning approaches. In Chapter 3,

we outline our proposed meta-learning inspired labeled scene adaptive crowd counting

approach. We show that using di↵erent camera scenes at training time is beneficial for

learning generalizable model parameters, which are then helpful to adapt to a specific

6 Chapter 1: Introduction

scene at test time. In Chapter 4, we propose an unlabeled scene adaptive approach

for crowd counting. Unlike the previous supervised approaches, we overcome the

constraints such as data annotations, and parameter update at test time. Finally, in

Chapter 5, we conclude this thesis.

Chapter 2

Related Work

In this chapter, we provide a brief overview of the works that are closely related

to our proposed approaches.

2.1 Crowd Counting

In the context of crowd counting for scene adaptation, we propose the following

two approaches: i) labeled scene adaptation to learn scene-specific model parameters

with few images, and ii) exploiting unlabeled images to extract scene-specific feature

representation to perform unlabeled scene adaptation. In the following subsections,

we briefly outline the work relevant to our proposed approaches.

2.1.1 Labeled Scene Adapative Crowd Counting

The research in crowd counting can be grouped into either detection [13, 14],

regression [15, 16] or density-based [17, 18] methods as proposed by [19]. Earlier work

7

8 Chapter 2: Related Work

focuses on the detection and regression-based approaches. In recent years, density-

based approaches using deep learning models have become popular and show superior

performance. Zhang et al. [4] propose an approach with two learning objectives for

density estimation and crowd counting. Additionally, they propose a non-parametric

method to fine-tune the model to minimize the distribution di↵erence between the

source and target scenes. Zhang et al. [11] addresses crowd counting by proposing a

multi-column neural network to handle an input image at multiple scales to overcome

the problem of scale variations. Sam et al. [9] propose to estimate the density of an

image patch from a regressor selected based on the density level classifier. Sindagi and

Patel [10] propose to encode both local and global input image contexts to estimate

the density map. In our work on labeled scene adaptation, we employ the state-of-

the-art CSRNet [3] architecture to learn crowd counting. We propose a principled

approach to infuse scene adaptation capability to this network for adaptation with

only a few labeled training images from a target scene. In the context of crowd

counting for scene adaptation, we propose the following two approaches: i) labeled

scene adaptation to learn scene scene-specific model parameters with few images,

and ii) exploiting unlabeled images to extract scene-specific feature representation to

perform unlabeled scene adaptation. In the following subsections, we briefly outline

the work relevant to our proposed approaches.

2.1.2 Unlabeled Scene Adaptive Crowd Counting

Although labeled scene adaptive crowd counting gets us closer to the real-world

deployment compared to the standard supervised setting, this setup still has some

Chapter 2: Related Work 9

limitations that restrict it from wide usage in the real-world. The limitations of

labeled scene-adaptive crowd counting are as follows: i) requirement of at least one

labeled image from the novel scene, and ii) it involves fine-tuning of several layers in

the CNN model, which involves backpropagation to update the network parameters.

Inspired by the above observations, we propose an approach for scene adapta-

tion by exploiting unlabeled images. As the unlabeled images are relatively easier to

collect in the real-world, this relieves the user from expensive data annotation. Addi-

tionally, our proposed approach does not involve gradient updates while adapting to

a target camera scene. In our work, we experiment with di↵erent architectures such

as CSRNet [3], ResNet FCN [20], and ResNet SFCN [20].

2.2 Domain Adaptation

In the context of crowd counting adaptation, Loy et al. [6] proposes a non-CNN

semi-supervised adaptation method by exploiting unlabeled data in the target do-

main. The drawback of this approach is that it requires corresponding samples that

have common labels between the source and target domains. This information is

usually not available in recent crowd counting datasets. Wang et al. [20] propose to

generate a large synthetic dataset and perform domain adaptation to the real-world

target domain. One drawback of this method is that it requires prior knowledge

about the distribution of the target domain to manually select the scenes in the syn-

thetic dataset. Hossain et al. [1] proposes a one-shot adaptation approach based on

fine-tuning few layers in the decoder network for adapting a crowd counting model

to a specific scene. Conversely, our labeled scene adaptive approach neithers requires

10 Chapter 2: Related Work

manual selection of data or layers in the network to perform scene adaptation on a

target camera scene.

Kang et al. [21] propose to use some meta information about the target scene (e.g.

camera tilt angle, height, or perspective map) to adapt the weights in convolutional

layers. In practice, the meta information is not always available, so this limits the

applicability of this method. In contrast, the unlabeled scene adaptation setup pro-

posed in our work requires minimal e↵ort in terms of data collection from the end

users and can be broadly applied in practical scenarios.

2.3 Few-Shot Learning

The goal of few-shot learning is to learn a model from limited training examples for

a task. Previously, Li et al. [22] propose a method for unsupervised one-shot learning

by casting the problem in a probabilistic setting. Lake et al. [23] use compositionality

and causality for one-shot scenario through Hierarchical Bayesian learning system.

Luo et al. [24] demonstrate the transferability of representations across domains with

few labeled data. A di↵erent perspective to tackle few-shot learning is by treating it

is as a meta-learning problem (also known as learning to learn [25, 26]). The essence

of using meta-learning for few-shot learning problem involves a neural network as a

learner to learn about a new task with just a few instances.

The recent work in meta-learning can be grouped into metric-based [27, 28, 29, 30],

model-based [31, 32] or optimization-based [7, 8, 12]. The metric-based [27, 28,

29, 30] methods in general learn a distance function to measure the similarity be-

tween data points belonging to the same class. Memory or model-based [31, 32]

Chapter 2: Related Work 11

approaches employ a memory component to store previously used training examples.

The optimization-based [7, 8, 12] frameworks learn good initialization parameters

based on learning from multiple tasks that favour fast adaptation on a new task. The

above works primarily target image recognition challenge, in our proposed labeled

scene adaptive crowd counting we follow the optimization-based meta-learning mech-

anism similar to [12] for a more challenging problem of crowd density estimation as

it has shown to achieve superior performance compared to other optimization based

methods.

Chapter 3

Few-Shot Scene Adaptive Crowd

Counting using Meta-Learning

In this chapter, we first describe the problem setup for few-shot scene adaptive

crowd counting (Sec. 3.1). We then introduce our proposed approach for scene adap-

tive crowd counting using meta-learning (Sec. 3.2), and finally we provide an overview

of the experimental setup (Sec. 3.3).

3.1 Problem Setup

We formulate our scene adaptive crowd counting as a few-shot learning problem

using meta-learning. In a traditional supervised machine learning setting, we are

given a dataset D = {Dtrain
, D

test}, where D
train and D

test are the training and test

sets, respectively. The goal is to learn a mapping function f✓ : x ! y that maps an

input x (e.g. an input image) to its corresponding label y (e.g. the crowd density

12

Chapter 3: Few-Shot Scene Adaptive Crowd Counting using Meta-Learning 13

Figure 3.1: An overview of the main components of our model. (a) Meta-training

stage on Dmeta�train. The meta-training involves optimizing an inner-update over
each scene and an outer-update across di↵erent scenes. (b) Backbone crowd counting
network. We use the CSRNet [3] as the backbone architecture. It comprises of a
feature extractor and a density map estimator. (c) Meta-testing on Dmeta�test. We
adapt the trained meta-model with ✓ to a new target scene by fine-tuning on K

images from this scene and test on other images from this scene.

map). We use ✓ to denote the parameters of the mapping function f✓. We learn ✓ by

optimizing its corresponding loss function defined on D
train. After training, we test

the generalization of the learned model f✓ on D
test.

In contrast, a few-shot meta-learning model is trained on a set of N tasks during

meta-learning (meta-training) from Dmeta�train, where each task has its training and

test sets. We use Ti = {Dtrain

i
, D

test

i
} (i = 1, 2, ..., N), where Ti 2 Dmeta�train to denote

the i-th task (also called episode) during the meta-learning phase. The notations

D
train

i
and D

test

i
correspond to the training set and the test set of the i-th task,

respectively. Note that during the meta-learning phase, both D
train

i
and D

test

i
consist

of labeled examples. We consider each camera scene as a task in the meta-learning

14 Chapter 3: Few-Shot Scene Adaptive Crowd Counting using Meta-Learning

formulation. Each of the training i-th scene consists of M labeled images. However,

in our work, we randomly sample a small number K 2 {1, 5} and K ⌧ M labeled

images for the i-th scene in each learning iteration to form D
train

i
. The D

test

i
is the

test set for the i-th scene. This setup reflects the real-world problem of having to

learn from a few labeled images. Our goal of the meta-learning is to learn the model

in a way that it can adapt to a new scene using only a few training examples from

the new scene. During testing (i.e., meta-testing) on Dmeta�test, we are given a new

target scene Tnew = {Dtrain

new
, D

test

new
}, where D

train

new
consists of a few (e.g. K) labeled

images from the target scene. The goal is to quickly adapt the model using D
train

new
so

that the adapted model performs well on D
test

new
which is the test data for this target

scene. In our work, we use the meta-learning approach in [12] called MAML. MAML

learns a set of initial model parameters during the meta-training stage. The model

parameters learned during meta-training are used for initializing the model during

meta-testing and are later fine-tuned on the few examples from a new target task.

The adapted model with fine-tuned parameters is expected to perform well on the

test images from the target task.

3.2 Our Approach

Consider a crowd counting model f✓ with the model parameters ✓. Given an

input image x, the output of f✓(x) is a crowd density map representing the density

level at di↵erent spatial locations in the image. The crowd count can be obtained

by summing over entries in the generated density map. When learning to adapt to a

particular scene Ti, the model parameters are updated using a few gradient steps to

Chapter 3: Few-Shot Scene Adaptive Crowd Counting using Meta-Learning 15

optimize the loss function defined on D
train

i
. This learning step can be considered as

inner-update during meta-learning and the optimization is expressed as follows:

✓̃i = ✓ � ↵r✓LTi(f✓)

where LTi(f✓) =
X

(x(j),y(j))2Dtrain
i

kf✓(x(j))� y
(j)k2

F

(3.1)

where x(j) and y
(j) denote a training image and its corresponding ground-truth density

map from the scene Ti, respectively. We use || · || to denote the Frobenius norm that

measures the di↵erence between the predicted crowd density map f✓(x(j)) and the

ground-truth density map y
(j). Here ↵ is the learning rate in the inner-update and

its value is fixed in our implementation. We then define a loss function on D
test

i
using

✓̃i as follows:

LTi(f✓̃i) =
X

(x(j),y(j))2Dtest
i

kf
✓̃i
(x(j))� y

(j)k2
F

(3.2)

During the meta-learning phase, we learn the model parameters ✓ by optimizing

LTi(f✓̃i) across N di↵erent training scenes. This will e↵ectively learn ✓ in a way that

when we update ✓ with a few gradient steps in a new scene, the updated parameters

✓̃ will perform well on test images from this scene. This optimization problem (or

outer-update) is similar to the optimization described in [12] and it is expressed as:

✓ = ✓ � �r✓

NX

i=1

LTi(f✓̃i) (3.3)

Fig. 3.1 shows an illustration of this meta-learning inspired process. The result of

the meta-learning phase is the set of model parameters ✓. Given a new scene, we use ✓

16 Chapter 3: Few-Shot Scene Adaptive Crowd Counting using Meta-Learning

to initialize the model and obtain the scene adaptive parameters ✓̃ by fine-tuning the

parameters on the few examples from the target scene with a few gradient updates.

The intuition is that well-learned parameters ✓ should be able to generalize to new

scenes with only a few gradient updates. In our implementation for few-shot scene

adaptive crowd counting, we compute the second derivatives to optimize Eq. 3.3 dur-

ing outer-update as described in [12].

Backbone Network Architecture: Our proposed few-shot learning approach for

crowd density estimation can be used with any backbone crowd counting network

architecture. In this thesis, we use the CSRNet [3] (see Fig. 3.1) as our backbone

network since it has shown to achieve state-of-the-art performance in crowd counting.

The network consists of a feature extractor and a density map estimator. The feature

extractor uses VGG-16 [33] to extract a feature map of the input image. Following

[3], we use the first 10 layers (up to Conv4 3 3) of VGG-16 as the feature extractor.

The output of the feature extractor has a resolution of 1/8 of the input image. The

density map estimator consists of a series of dilated convolutional layers [34] to regress

the output crowd density map for the given image.

We use a pre-trained VGG-16 [33] model on ImageNet [35] to initialize the weights

of the feature extractor part of our network. The weights of the dilated convolutional

layers in the density map estimator part of the network are initialized from a Gaus-

sian with a 0.01 standard deviation. We then train the network end-to-end on the

training set of WorldExpo’10 [4] dataset to learn how to produce a density map for

an image containing the crowd. We refer to this trained network as “Baseline pre-

Chapter 3: Few-Shot Scene Adaptive Crowd Counting using Meta-Learning 17

trained” in the remaining of the thesis. Note that although the baseline pre-trained

model is learned on data from multiple training scenes, it is susceptible when used

for adaptation in a few labeled data regimes as it is not specifically designed to learn

from few images which we discuss in the later section. Therefore, to overcome this

limitation, we use this baseline pre-trained network as the initialization for the meta-

learning phase. During meta-learning, we fix the parameters of the feature extractor

and train only density map estimator on di↵erent scene-specific data. We follow the

training scheme described in this section to learn to adapt to a scene with a few

labeled images.

3.3 Experiments

In this section, we first introduce the datasets and experiment setup (Sec. 3.3.1).

We then describe several baselines for comparison (Sec. 3.3.2). We present the exper-

imental results (Sec. 3.3.3).

3.3.1 Datasets and Setup

Datasets: Most of the available datasets for crowd-counting are not specifically de-

signed for the scene adaptive crowd counting problem. Our problem formulation

requires that the training images are from multiple scenes. To the best of our knowl-

edge, WorldExpo’10 [4] is the only dataset with multiple scenes. We use this dataset

for the training of our model. We also consider two other datasets (Mall [6] and

UCSD [5]) for cross-dataset testing. The details of these datasets are described below.

18 Chapter 3: Few-Shot Scene Adaptive Crowd Counting using Meta-Learning

The WorldExpo’10 [4] dataset consists of 3980 labeled images from 1132 video

sequences based on 108 di↵erent scenes. We consider 103 scenes for training and the

remaining 5 scenes for testing. The image resolution is fixed at 576 ⇥ 720. When

testing on a target scene, we randomly choose K 2 {1, 5} images from the available

images in this scene and use them for obtaining the scene adaptive model parameters

✓̃ (see Fig. 3.1). We then use the remaining images from this scene to calculate the

performance of the parameters ✓̃. The Mall [6] dataset consists of 2000 images from

the same camera setup inside a mall. The resolution of each image is 640 ⇥ 480. We

follow the standard split, which consists of 800 training images and 1200 test images.

Similar to the setup explained earlier, we considerK 2 {1, 5} images from the training

set for fine-tuning the model to obtain the scene adaptive model parameters ✓̃ and

later test the model on the test set. The UCSD [5] dataset consists of 2000 images

from the same surveillance camera setup to capture a pedestrian scene. The crowd

density is relatively sparse, ranging from 11 to 46 persons in an image. The resolution

of each image is 238 ⇥ 158. We follow the standard split by considering the first 800

frames for training and 1200 images for testing. We use the same experiment setup

of the Mall dataset.

Ground-truth Density Maps: All datasets come with dot annotations, where

each person in the image is annotated with a single point. Following [3, 11], we use a

Gaussian kernel to blur the point annotations in an image to create the ground-truth

density map. We set the value of � = 3 in the Gaussian kernel by following [3].

Implementation Details: We use PyTorch [36] for the implementation of our ap-

proach. The backbone crowd counting network is implemented based on the source

Chapter 3: Few-Shot Scene Adaptive Crowd Counting using Meta-Learning 19

code from the original CSRNet paper [3]. To generate the Baseline pre-trained net-

work, we follow the procedure described in [3]. During the meta-learning phase,

we initialize the network with baseline pre-trained model. We freeze the feature

extractor and only train the density map estimator of the network. We set the hyper-

parameters ↵ = 0.001 for the inner-update in SGD (see Eq. 3.1) and � = 0.001 in

the outer-update (see Eq. 3.3) in Adam [37]. We randomly sample a scene for each

episode during inner-update.

Evaluation Metrics : To evaluate the results, we use the standard metrics in the

context of crowd count estimation. The metrics are: Mean Absolute Error (MAE),

Root Mean Squared Error (RMSE) and Mean Deviation Error (MDE) as expressed

below:

MAE =
1

N

NX

i=1

|�ŷ
i
� �y

i
| (3.4)

RMSE =

vuut 1

N

NX

i=1

|�ŷ
i
� �y

i
|2 (3.5)

MDE =
1

N

NX

i=1

|�ŷ
i
� �y

i
|

�
y

i

(3.6)

where N is the total number of images in a given camera scene, �ŷ
i
represents the

crowd count of the density map generated by the model and �y
i
is the corresponding

crowd count of ground-truth density map for the i-th input image. Let ph,w be the

value at the spatial location (h, w) in a density map for an image i, the count �i for

the image can be expressed �i =
P

H

h=1

P
W

w=1 ph,w, where H ⇥W is the spatial size of

the density map.

20 Chapter 3: Few-Shot Scene Adaptive Crowd Counting using Meta-Learning

3.3.2 Baselines

We define the following baselines for comparison. Note that these baselines have

the same backbone architecture as our approach.

Baseline pre-trained: This baseline is a standard crowd counting model as in [3]

trained in a standard supervised setting. The model parameters are trained from all

images in the training set. Once the training is done, the model is evaluated directly

on images in the new target scene without any adaptation. Note that, the original

model in [3] uses the perspective maps and ground-truth ROI to enhance the final

scores, we do not use them for the sake of simplicity.

Baseline fine-tuned: In this baseline, we first consider the Baseline pre-trained

crowd counting model learned ✓ from the standard supervised setting. For a given

new scene during testing, we fix the parameters of the feature extractor and fine-tune

only the density map estimator using a few images K 2 {1, 5} from the target scene.

Meta pre-trained: This baseline is similar to our approach, but without the fine-

tuning on the target scene. Intuitively, it is similar to “baseline pre-trained”.

3.3.3 Experimental Results

Main Results: Table 3.1 shows the results on the WorldExpo’10 dataset for the 5

test (or target) scenes. We show the results of using both K = 1 and K = 5 images

for fine-tuning in the test scene. This dataset also comes with ground-truth region-

of-interest (ROI). We report the results with (w/) and without (w/o) ROI. We repeat

the experiments 5 times in each setting with K randomly selected images. We average

the scores across the 5 trials and report the standard deviation along with the mean

Chapter 3: Few-Shot Scene Adaptive Crowd Counting using Meta-Learning 21

Target Methods
1-shot (K=1) 5-shot (K=5)

MAE RMSE MDE MAE RMSE MDE

Scene 1

Baseline pre-trained 5.55 6.31 0.70 5.55 6.31 0.70

Baseline fine-tuned 5.45 ± 0.03 6.23 ± 0.03 0.68 ± 0.004 5.06 ± 0.11 5.88 ± 0.10 0.63 ± 0.005

Meta pre-trained 4.63 5.5 0.529 4.63 5.5 0.529

Ours w/o ROI 3.47 ± 0.01 4.19 ± 0.01 0.50 ± 0.007 3.42 ± 0.03 4.81 ± 0.007 0.29 ± 0.004

Ours w/ ROI 3.19 ± 0.03 4.30 ± 0.07 0.38 ± 0.03 3.05 ± 0.06 4.19 ± 0.15 0.31 ± 0.08

Scene 2

Baseline pre-trained 24.07 34.29 0.17 24.07 34.29 0.17

Baseline fine-tuned 22.74 ± 0.47 32.92 ± 0.66 0.15 ± 0.003 20.84 ± 1.03 30.49 ± 1.37 0.156 ± 0.001

Meta pre-trained 21.65 30.51 0.185 21.65 30.51 0.185

Ours w/o ROI 12.05 ± 0.74 16.62 ± 1.10 0.11 ± 0.007 11.41 ± 0.54 15.35 ± 0.51 0.11 ± 0.015

Ours w/ ROI 11.17 ± 1.01 15.50 ± 1.18 0.11 ± 0.012 10.73 ± 0.36 14.95 ± 0.60 0.10 ± 0.003

Scene 3

Baseline pre-trained 35.54 40.78 0.40 35.54 40.78 0.40

Baseline fine-tuned 33.89 ± 0.26 39.33 ± 0.25 0.38 ± 0.03 31.05 ± 0.41 36.70 ± 0.43 0.34 ± 0.004

Meta pre-trained 36.18 42.32 0.402 36.18 42.32 0.402

Ours w/o ROI 8.15 ± 0.17 11.04 ± 0.42 0.09 ± 0.04 8.31 ± 0.54 10.75 ± 0.54 0.10 ± 0.009

Ours w/ ROI 8.07 ± 0.23 10.92 ± 0.21 0.10 ± 0.007 8.18 ± 0.24 10.96 ± 0.31 0.09 ± 0.002

Scene 4

Baseline pre-trained 23.95 28.57 0.19 23.95 28.57 0.19

Baseline fine-tuned 15.69 ± 0.28 18.96 ± 0.27 0.14 ± 0.003 16.67 ± 0.10 19.70 ± 0.16 0.15 ± 0.002

Meta pre-trained 22.44 28.25 0.183 22.44 28.25 0.183

Ours w/o ROI 9.74 ± 0.09 11.9 ± 0.12 0.084 ± 0.001 11.21 ± 0.47 16.1 ± 0.45 0.118 ± 0.004

Ours w/ ROI 9.39 ± 0.26 11.78 ± 0.34 0.07 ± 0.02 9.41 ± 0.21 11.91 ± 0.17 0.08 ± 0.002

Scene 5

Baseline pre-trained 10.70 13.0 0.67 10.70 13.0 0.67

Baseline fine-tuned 8.9 ± 0.05 11.7 ± 0.04 0.50 ± 0.03 7.79 ± 0.35 10.57 ± 0.66 0.44 ± 0.015

Meta pre-trained 9.78 12.26 0.605 9.78 12.26 0.605

Ours w/o ROI 4.09 ± 0.01 7.36 ± 0.01 0.196 ± 0.001 4.28 ± 0.14 7.68 ± 0.60 0.20 ± 0.001

Ours w/ ROI 3.82 ± 0.05 6.91 ± 0.11 0.192 ± 0.001 3.91 ± 0.26 7.18 ± 0.85 0.18 ± 0.001

Average

Baseline pre-trained 19.96 24.59 0.42 19.96 24.59 0.42

Baseline fine-tuned 17.33 21.82 0.37 16.28 20.66 0.34

Meta pre-trained 18.93 23.76 0.38 18.93 23.76 0.38

Ours w/o ROI 7.5 10.22 0.197 7.7 10.93 0.165

Ours w/ ROI 7.12 9.88 0.172 7.05 9.83 0.155

Table 3.1: Results on WorldExpo’10 [4] test set with K = 1 and K = 5 train images
in the targe scene. We report the performance our our approach with and without
ROI. We also compare with three baselines Baseline pre-trained, Baseline fine-tuned

and Meta pre-trained. We compare the results across 5 test scenes and the last two
rows represent the average score for our models.

Methods
1-shot (K=1) 5-shot (K=5)

MAE RMSE MDE MAE RMSE MDE

Baseline pre-trained 7.29 7.96 0.22 7.29 7.96 0.22

Baseline fine-tuned 7.11 ± 0.09 7.80 ± 0.08 0.21 ± 0.003 6.58 ± 0.07 7.32 ± 0.06 0.20 ± 0.002

Meta pre-trained 7.01 7.69 0.230 7.01 7.69 0.230

Ours w/o ROI 2.52 ± 0.08 3.26 ± 0.12 0.078 ± 0.002 2.53 ± 0.18 3.25 ± 0.27 0.078 ± 0.004

Ours w/ ROI 2.44 ± 0.02 3.12 ± 0.03 0.076 ± 0.001 2.37 ± 0.02 3.04 ± 0.01 0.073 ± 0.001

Table 3.2: Results on the Mall [6] dataset with K = 1 and K = 5 images in the target
scene. The meta-training is performed on the WorldExpo’10 training data.

22 Chapter 3: Few-Shot Scene Adaptive Crowd Counting using Meta-Learning

Methods
1-shot (K=1) 5-shot (K=5)

MAE RMSE MDE MAE RMSE MDE

Baseline pre-trained 17.07 18.13 0.63 17.07 18.13 0.63

Baseline fine-tuned 16.41 ± 0.24 17.50 ± 0.23 0.60 ± 0.010 14.33 ± 0.16 15.55 ± 0.15 0.54 ± 0.006

Meta pre-trained 16.45 16.7 0.627 16.45 16.7 0.627

Ours w/o ROI 4.32 ± 0.74 5.57 ± 0.98 0.15 ± 0.022 3.82 ± 0.39 4.87 ± 0.58 0.14 ± 0.012

Ours w/ ROI 3.08 ± 0.13 4.16 ± 0.23 0.12 ± 0.005 3.41 ± 0.26 4.22 ± 0.36 0.12 ± 0.007

Table 3.3: Results on the UCSD [5] dataset with K = 1 and K = 5 images in the
target scene. The meta-training is performed on the WorldExpo’10 training data.

of the scores in Table 3.1. We report the results from our models as “Ours w/o ROI ”

and “Ours w/ ROI ”. We compare with the three baselines defined in Sec. 3.3.2. Our

models outperform the baselines in most cases. This shows that the meta-learning

fine-tuning improves the model’s performance. Note that our problem setup requires

K labeled images in the test set and hence these K images have to be excluded in the

calculation of the evaluation metrics, i.e., we have slightly fewer test images for the

results in Table 3.1. Therefore, the performance numbers in Table 3.1 should not be

directly compared with previously reported numbers in the crowd counting literature

since our problem formulation is completely di↵erent. Besides, some previous crowd

counting works [3] use additional components (e.g., perspective maps) to enhance the

final performance. We do not consider these additional components in our models

for the sake of simplicity (also the publicly available source code for [3] does not

implement those extra components), so the number for “Baseline pre-trained” in

Table 3.1 is slightly worse than the number reported in [3].

Table 3.2 and Table 3.3 show the results on the Mall and UCSD datasets, respec-

tively. Here we use the training data of WorldExpo’10 for the meta-learning. We then

use Mall and UCSD for the scene adaptation and evaluation. This cross-dataset test-

ing can demonstrate the generalization of the proposed method. Our model clearly

Chapter 3: Few-Shot Scene Adaptive Crowd Counting using Meta-Learning 23

(a) (b) (c)

Figure 3.2: Quantitative results of the learning curve during meta-testing. The graph
(a) shows the learning for Scene 2 and (b) shows the result for Scene 3 in World-
Expo [4] test sets, respectively. Similarly, (c) shows the learning on UCSD [5]. Note
that our approach continues to learn and achieves a lower MAE compared to the base-
line fine-tuning approach in ten gradient steps. We consider K = 5 labeled examples
in all three cases.

outperforms the baselines.

To gain further insights into our method, we visualize the MAE over the number of

gradient steps in Fig. 3.2 for di↵erent scenes. In all the cases, our proposed approach

has a better start in learning and improves continuously with more gradient steps.

In the three cases shown in Fig. 3.2, our approach performs significantly better that

fine-tuning with the same number of gradient updates.

Methods
1-shot (K=1)

MAE RMSE
Hossain et al. [1] 8.23 12.08
Ours w/o ROI 7.5 10.22
Ours w/ ROI 7.12 9.88

Table 3.4: Comparison of results on the WorldExpo’10 [4] dataset with K = 1 images
in the target scene with Hossain et al. [1]. We use the standing train/test split on
WorldExpo’10. Our approach outperforms Hossain et al. [1].

In Fig. 3.3, we show the comparison of the crowd count estimations between our

approaches and baselines in di↵erent scenes in WordExpo’10. Our method consis-

tently produces crowd counts that are closer to the ground-truth compared with

24 Chapter 3: Few-Shot Scene Adaptive Crowd Counting using Meta-Learning

(a) K=1, Scene 2 (b) K=5, Scene 2

(c) K=1, Scene 3 (d) K=5, Scene 3

(e)K=1, Scene 5 (f) K=5, Scene 5

Figure 3.3: Crowd counting performance comparison between the baselines and our
approaches in di↵erent scene-specific images from WorldExpo’10 [4] dataset. The
labels include, (a) K = 1 in Scene 2, (b) K = 5 in Scene 2, (c) K = 1 in Scene 3,
(d) K = 5 in Scene 3, (e) K = 1 in Scene 5 and (f) K = 5 in Scene 5. Note that
our approaches outperform the baselines in di↵erent settings and is robust to varying
crowd density.

other baselines.

In Table 3.4, we compare our results with the one-shot scene adaptation proposed

in [1] based on the standard WorldExpo’10 data split. In [1], the last two layers

in the pre-trained model are fine-tuned to adapt to the target scene. Our approach

outperforms [1].

Ablation Studies: Our approach is based on MAML [12]. In the literature, there are

other optimized-based meta-learning approaches, e.g., [7, 8]. We perform additional

ablation studies on the e↵ect of di↵erent meta-learning frameworks. The results are

Chapter 3: Few-Shot Scene Adaptive Crowd Counting using Meta-Learning 25

Target Methods
1-shot (K=1) 5-shot (K=5)

MAE RMSE MDE MAE RMSE MDE

WorldExpo (Avg.)

Meta-LSTM [8] 13.33 18.22 0.252 12.7 16.61 0.223

Reptile [7] 11.63 15.07 0.260 8.20 11.31 0.181

Ours w/o ROI 7.5 10.22 0.197 7.7 10.93 0.165

Ours w/ ROI 7.12 9.88 0.172 7.05 9.83 0.155

Mall

Meta-LSTM [8] 3.95 ± 0.04 4.34 ± 0.537 0.12 ± 0.002 3.54 ± 0.44 4.41 ± 0.472 0.10 ± 0.014

Reptile [7] 2.55 ± 0.07 3.26 ± 0.09 0.079 ± 0.001 2.49 ± 0.23 3.20 ± 0.29 0.078 ± 0.006

Ours w/o ROI 2.52 ± 0.08 3.26 ± 0.12 0.078 ± 0.002 2.53 ± 0.18 3.25 ± 0.27 0.078 ± 0.004

Ours w/ ROI 2.44 ± 0.02 3.12 ± 0.03 0.076 ± 0.001 2.37 ± 0.02 3.04 ± 0.01 0.073 ± 0.001

UCSD

Meta-LSTM [8] 14.15 ± 0.48 16.29 ± 0.425 0.463 ± 0.018 13.81 ± 0.10 15.99 ± 0.009 0.45 ± 0.004

Reptile [7] 5.64 ± 2.05 6.85 ± 2.06 0.20 ± 0.075 4.48 ± 0.88 5.62 ± 0.99 0.166 ± 0.033

Ours w/o ROI 4.32 ± 0.74 5.57 ± 0.98 0.15 ± 0.022 3.82 ± 0.39 4.87 ± 0.58 0.14 ± 0.012

Ours w/ ROI 3.08 ± 0.13 4.16 ± 0.23 0.12 ± 0.005 3.41 ± 0.26 4.22 ± 0.36 0.12 ± 0.007

Table 3.5: The overall results for adaptation on WorldExpo’10 [4] test set, Mall [6] and
UCSD [5] with K = 1 and K = 5 train images. We compare with other optimization
based meta-learning approaches “Reptile” [7] and “Meta-LSTM” [8].

shown in Table 3.5. Nichol et al. [7] propose an optimization based meta-learning

approach similar to [12] using gradient descent. However, [7] di↵ers from [12] in that

it does not consider the second-order derivative in the meta-optimization. As a result,

its performance is slightly lower as reported in Table 3.5 although it converges faster.

In case of [8], the meta-learner is a LSTM based model unlike in [12] and [7], because

of the similarity between the gradient update in backpropagation and the cell-state

update in LSTM. The drawback of [8] is the large number of trainable parameters

and di↵erent architectures for the learner and meta-learner. In general, the MAML-

based meta learning that our approach uses outperforms other optimization-based

meta-learning approaches. In Table 3.5, we highlight only the average score across 5

scenes in WorldExpo due to page limit. The training scheme for [7, 8] is similar to our

approach based on the same backbone network [3] as described in the implementation

details (Sec 3.3.1). For the hyperparameters setting, please refer to [7, 8].

Chapter 4

AdaCrowd: Unlabeled Scene

Adaptive Crowd Counting

4.1 Problem Setup

In this section, we first review several standard setups for crowd counting that

have been studied in the literature. These setups have various limitations in real-

world deployment. This motivates us to introduce a new problem setup for crowd

counting. We believe our setup is closer to real-world scenarios compared with existing

problem setups.

Supervised: This is the most common setup in previous work. This setup treats

crowd counting as a purely supervised learning problem. The goal is to learn a

function f✓ : x! y that maps an image x to a density map y. The model parameters

✓ are learned from labeled training images. There has been lots of previous work on

designing powerful models (e.g., [3, 4, 9, 10, 11, 20, 34, 38, 39, 40, 41, 42, 43, 44]).

26

Chapter 4: AdaCrowd: Unlabeled Scene Adaptive Crowd Counting 27

Domain Adaptation (DA): The standard supervised approach implicitly assumes

that the training and test images are similar. In practice, training and test images

often come from di↵erent domains, e.g., they might be collected from two di↵er-

ent scenes. Due to domain shift, a model trained on the source domain often does

not perform well in the target domain. Domain adaption is a standard approach to

address this domain shift. Most recent work focuses on unsupervised domain adap-

tation (UDA). In UDA, the source domain contains labeled data, whereas the target

domain only contains unlabeled data. Most approaches of UDA [45, 46] use a domain

adaptation loss to minimize the discrepancy between features of source and target

domains.

The domain adaptation setup also has limitations in practical deployment. First

of all, DA assumes that we have enough unlabeled data from the target domain. This

might be infeasible in practice. For instance, if we consider an end user’s environment

as the target domain, we may not have the authority to collect images from the

target domain. Second, even if we have enough unlabeled data in the target domain,

most DA approaches still require running an algorithm to perform many iterations of

gradient updates and backpropagation. In practice, a crowd counting system might

be deployed directly on end-user’s surveillance cameras or other devices that may not

have enough computing capabilities to run the domain adaptation algorithms.

Few-Shot Scene Adaptation: Some recent works [1, 2] introduce a new problem

setup called few-shot scene adaption. During deployment, this setup only needs a

small number (e.g. one to five) of labeled images from a target scene. The training

data consists of labeled images from multiple scenes. The model is learned in a way

28 Chapter 4: AdaCrowd: Unlabeled Scene Adaptive Crowd Counting

that enables it to quickly adapt to a new scene with only a few labeled examples.

These works argue that it is often easier to get a small number of images (even with

labels) in the target scene. For example, after a surveillance camera is installed,

there is often a calibration process and it is possible to collect (and even label) a

few images during this calibration process. Although this setup brings us closer to

real-world scenarios, it still requires a few labeled images from the target domain (or

scene). Additionally, the methods in [1, 2] involve several rounds of gradient updates

and backpropagation to adapt model parameters based on the few labeled images. In

practice, this is still taxing for end-users. In this thesis, we push the limit on data

requirements and overcome gradient updates at test time by proposing the following

setup.

Unlabeled Scene Adaptation (our approach): This setup is similar to the few-

shot case. The key di↵erence is that this setup does not require labeled examples

from the target scene during deployment. Instead, it only requires a small number of

unlabeled images from the target scene as they are fairly easy to collect in practice.

Similar to [1, 2], our training data consist of labeled images from multiple scenes.

We propose a novel approach that learns to adapt to a target scene with only the

scene-specific unlabeled images. Our approach requires minimal data collection e↵ort

from end-users. In addition, it only involves some feedforward computation (i.e. no

gradient update or backpropagation) for adaption. This makes it more practical and

suitable for real-world deployment.

Chapter 4: AdaCrowd: Unlabeled Scene Adaptive Crowd Counting 29

4.2 Our Approach

In Fig. 4.1, we provide an overview of our AdaCrowd framework. The framework

consists of two main networks, the crowd counting network and the guiding network.

The crowd counting network is a CNN model that takes an input image and outputs

its corresponding density map. Compared with standard crowd counting models,

the key di↵erence of our crowd counting network is that it has several special layers

called the guided batch normalization (GBN) layers. A GBN layer plays a role similar

to the standard batch normalization (BN). The main di↵erence is that the a�ne

parameters of a BN layer are determined from the mini-batch of data, while the

parameters of the GBN layer are directly predicted by the guiding network. Most

parameters of the crowd counting network are shared across di↵erent scenes. But the

parameters of GBN layers change to adapt to di↵erent scenes. Due to this adjustable

nature of GBN parameters, our model can learn to adapt to di↵erent scenes. Another

important component in the architecture is the guiding network. This network takes

the unlabeled images from a specific target scene as its input and outputs the GBN

parameters for this scene. During training, the guiding network learns to predict

GBN parameters that work well for the corresponding scene. At test time, we use

the guiding network to adapt the crowd counting network to a specific target scene.

In the following, we first describe the crowd counting network with guided batch

normalization in Sec. 4.2.1. We give details of the guiding network in Sec. 4.2.3.

Finally, we describe the learning and inference of our model in Sec. 4.3.

30 Chapter 4: AdaCrowd: Unlabeled Scene Adaptive Crowd Counting

Figure 4.1: Illustration of our AdaCrowd framwork. (Top row) The crowd counting
network takes an input image and estimates the density map. The crowd counting
network has P number of GBN blocks with the proposed guided batch normalization
(GBN) layers. The parameters � = {�, �} for all the GBN layers are predicted
from another neural network called the guiding network. (Bottom row) The guiding
network takes the unlabeled image (z) from the training scene and produces GBN
parameters specifically adapted to that scene. Through these scene adapted GBN
parameters, our model achieves adaptation to di↵erent scenes.

4.2.1 Crowd Counting Network with Guided Batch Normal-

ization

In our AdaCrowd framework, we propose a new conditional normalization layer

called the Guided Batch Normalization (GBN) layer. For ease of presentation, let us

consider one particular layer in a CNN model and see how to design the GBN layer

to be inserted after this layer in the model. We consider a mini-batch of B examples

xi : i = 1, 2, ..., B, where xi is the CNN feature map at this layer for the i-th example,

i.e. xi 2 RH⇥W⇥D where H ⇥W are the spatial dimensions and D is the channel

dimension. Similar to Batch Normalization [47], in GBN we normalize the activation

to have zero mean and unit variance along the channel dimension over the mini-

batch during training. However, unlike BN which learns the a�ne transformation

parameters � and � over the examples {xi : i = 1, 2, ..., B} in the mini-batch, in

Chapter 4: AdaCrowd: Unlabeled Scene Adaptive Crowd Counting 31

GBN, we directly predict them using the guiding net (see Sec. 4.2.3). The overall

computation in GBN can be summarized as follows:

x̂i[h, w, d] = GBN(xi[h, w, d]; �d, �d), where (4.1a)

GBN = �d ·
�
(xi[h, w, d]� µd)/�d

�
+ �d (4.1b)

8 i 2 {1..B}, h 2 {1..H}, w 2 {1..W}, d 2 {1..D} (4.1c)

where xi[h, w, d] denotes the [h, w, d] entry of the feature map xi and x̂i[h, w, d] is the

normalized output of the activation xi[h, w, d]. The mean µd and standard deviation

�d are calculated from the activation in channel d:

µd =

P
B

i=1

P
H

h=1

P
W

w=1 xi[h, w, d]

B ⇥H ⇥W
(4.2a)

�d =

sP
B

i=1

P
H

h=1

P
W

w=1

�
xi[h, w, d]� µd

�2

B ⇥H ⇥W
+ ✏ (4.2b)

where µd, �d 2 R and ✏ is used for numerical stability. In Eq. 4.1, the a�ne parame-

ters �d, �d 2 R control the scaling and shifting operations corresponding to the d-th

channel dimension. Let us use � and � to denote the concatenations of {�d : 8d} and

{�d : 8d}, respectively. The variables �, � 2 RD are the parameters of this GBN layer

and their values vary across di↵erent scenes. In general, for the p-th GBN layer, we

can denote the a�ne parameters for the feature channel d by �p
d
, �

p

d
.

The proposed GBN layer is related to conditional batch normalization (CBN) [48].

However, the noticeable di↵erences between them are: (1) CBN layer is specially de-

vised to consider information from linguistic data, whereas GBN is designed to use

32 Chapter 4: AdaCrowd: Unlabeled Scene Adaptive Crowd Counting

ReLU

GBN

Conv !

"#	 − &# / '#

" ∈ ℝHxWxD

scale

shift

"*

Linear +

Adaptive Average
Pool

Conv +

Cr
ow

d
Co

un
tin

g
N

et
w

or
k

G
ui

di
ng

 N
et

w
or

k

, ∈ ℝHxWx3

-. = {1., 3.}

G
BN

 B
lo

ck
 .

356

156

7

7

7
"#

Figure 4.2: Overview of a GBN block in the AdaCrowd framework. For instance,
given an input x to the GBN layer in GBN Block p, we first normalize x along
the channel dimensions in the GBN layer. We then use the a�ne transformation
parameters �p

d
and �p

d
corresponding to the p-th GBN block to uniformly scale and

shift the activation features to generate the output x̂. The a�ne parameters are
generated by the guiding network based on the scene-specific unlabeled data z.

information from spatial input data such as images. (2) CBN depends on the learned

weights for � and � obtained from BN layer in a pre-trained network for initializa-

tion. However, in GBN we directly predict � and � from external visual data and

consequently do not require a pre-trained network for GBN weight initialization. (3)

Another technical di↵erence is that, CBN learns to shift the pre-trained � and � by

small margin, whereas we completely replace the values for � and � as each scene is

visually di↵erent. Therefore, GBN is more intuitive and flexible when applying a�ne

transformation on spatial data. We also visualize the operations in a GBN block in

Fig. 4.2.

Chapter 4: AdaCrowd: Unlabeled Scene Adaptive Crowd Counting 33

4.2.2 Crowd Counting Network

The objective of the crowd counting network is to generate the density map for

the input image. For our AdaCrowd framework, we can use any backbone crowd

counting network by inserting several GBN layers into the backbone.

To simplify the notation, we use � to denote the concatenation of all parameters

in GBN layers (i.e. � and � from all GBN layers) in the crowd counting network.

We use to denote other parameters in the crowd counting network. The crowd

counting network can be written as a function f parameterized by {�, } as:

ŷ = f(x; {�, }) (4.3)

where f maps the input image x to the predicted density map ŷ.

Note that will be the same for di↵erent scenes, while � will change across

scenes since � is the output of the guiding network (see Sec. 4.2.3). By predicting �

specifically to a scene, we achieve scene adaptive crowd counting.

4.2.3 Guiding Network

The goal of the guiding network is to predict the GBN parameters � using one or

more unlabeled images from a scene. For ease presentation, we assume that we only

one unlabeled image (denoted by z 2 RH⇥W⇥3) in the following. We will describe

how to handle with case of multiple unlabeled images later.

Given the unlabeled image z, we use it as the input to the guiding network to

34 Chapter 4: AdaCrowd: Unlabeled Scene Adaptive Crowd Counting

predict the GBN parameters � as:

� = g(z; ✓) (4.4)

where g(·; ✓) denotes a function parameterized by ✓. In this thesis, g(·; ✓) is imple-

mented as a CNN where the input z is an unlabeled image. But in general, g(·; ✓)

can be any arbitrary parametric function.

Our framework can be easily extended to the more general case where we have K

(K > 1) unlabeled images from the target scene. In this case, We can simply average

(� = 1
K

P
K

i=1 �i) the predicted �i over K inputs.

Discussion: The idea of using adjustable GBN parameters for adaptation is inspired

by the work in image translation [49]. Similar to [49], the a�ne transformation in

the normalization layers is spatially invariant, so it can only obtain global appearance

information. In the context of crowd counting, di↵erent scenes are often characterized

by some factors (e.g. camera angle, height) that cause changes in the global scene

appearance. By adapting parameters in the GBN layers (which are spatially invari-

ant), the parameter � obtained via the guiding network from the unlabeled images

intuitively captures the global information (e.g. scene geometry) about the target

scene. The local structures needed in crowd counting are implicitly captured by the

parameter and are shared across di↵erent scenes.

Chapter 4: AdaCrowd: Unlabeled Scene Adaptive Crowd Counting 35

4.3 Learning and Inference

Note that the counting network is parameterized by {�, }. But the model pa-

rameters we need to learn are { , ✓}, since � will be directly predicted from the

guiding network (see Eq. 4.4). We would like to learn model parameters that have

the following property. Suppose we have a new scene represented by z (unlabeled

image). We would like the counting network with GBN parameters � obtained via

Eq. 4.4 to perform well on images from this scene. To achieve this, we learn the model

parameters from a set of labeled training images collected from multiple scenes. The

model parameters are learned in a way that is amenable to e↵ective adaptation to a

new scene based on its scene-specific unlabeled data z.

The learning algorithm works iteratively. In each iteration, the algorithm con-

structs a unlabeled scene adaptation task that mimics the scenario during testing.

For a scene St, we use {(x1, y1), ..., (xN , yN)} to denote the N training examples from

this scene, where (xi, yi) correspond to the i-th (image, label) pair. We construct the

task as follows. We randomly select one image to construct the scene-specific unla-

beled data z. Without loss of generality, let us assume that x1 is selected to construct

z. We feed z to Eq. 4.4 to compute the GBN parameters � from the guiding network

parameterized by ✓. We then define a loss function that measures the “goodness” of

the counting network with parameters {�, }. Since our goal is for the learned model

to perform well on other images from the same scene, a reasonable loss function is

to measure the performance on the remaining N � 1 images from this scene. We can

36 Chapter 4: AdaCrowd: Unlabeled Scene Adaptive Crowd Counting

define the loss for this scene St as follows:

L({ , ✓};St) =
NX

i=2

||f(xi; {�, })� yi||2 (4.5a)

=
NX

i=2

||f(xi; {g(z; ✓), })� yi||2 (4.5b)

Here we use the L2 distance to measure the di↵erence between the predicted (i.e.

f(xi; {g(z; ✓), })) and the ground-truth (i.e. yi) density maps.

The overall objective is to learn { , ✓} that minimize Eq. 4.5 across all scenes

during training, i.e.:

min
{ ,✓}

X

t

L({ , ✓};St) (4.6)

In Eq. 4.6, we sum over the loss across all scenes to optimize the parameters during

training. In Algorithm 1, we provide an overview of the learning mechanism.

Algorithm 1: Training for unlabeled scene adaptive crowd counting

Input: Training images from multiple scenes {St}
Initialize the model parameters { , ✓};
while not done do

for each scene St
do

Sample one image to obtain z;
Compute GBN parameters � using Eq. 4.4;
Evaluate 5{ ,✓}L({ , ✓};St) in Eq. 4.5 ;

end

Update { , ✓}
P

t
5{ ,✓}L({ , ✓};St) ;

end

Let { ⇤
, ✓

⇤} be the learned model parameters that minimize Eq. 4.6. During

testing, we are given a new scene represented as znew (unlabeled image). For any

Chapter 4: AdaCrowd: Unlabeled Scene Adaptive Crowd Counting 37

crowd image x from this scene, we can predict its label ŷ as:

ŷ = f(x; {�⇤
,

⇤}), where �⇤ = g(znew; ✓
⇤) (4.7)

4.4 Experiments

In this section, we first describe the datasets and the experiment setup in Sec. 4.4.1.

We then introduce several baseline methods used for comparisons in Sec. 4.4.2. We

present experimental results in Sec. 4.4.3.

4.4.1 Datasets and Setup

Datasets: We experiment with the following datasets.

• WorldExpo’10 [4]: The WorldExpo’10 dataset consists of 3980 labeled images

covering 108 di↵erent surveillance camera scenes. The dataset is split into

training set (103 scenes and 3380 images) and testing set (5 scenes and 600

images). Note that although the dataset consists of ROI maps, we do not use

them during the training of our AdaCrowd model. In our experiments, we

resize the images to 512 ⇥ 672.

• Mall [6]: The Mall dataset consists of 2000 frames captured from a surveillance

camera in a mall. The frame size is 640 ⇥ 480. The training and test sets

consist of 1200 and 800 images, respectively.

• PETS [51]: The PETS dataset is a multi-view dataset of crowd scene from

8 views. We use the first 3 views following [52] and similarly we consider se-

38 Chapter 4: AdaCrowd: Unlabeled Scene Adaptive Crowd Counting

quences S1L3 (14 17, 14 33), S2L2 (14 55) and S2L3 (14 41) as the training set

consisting of 1105 images. For test set, we consider S1L1 (13 57, 13 59), S1L2

(14 06, 14 31) consisting of 794 images. We treat each view as a scene in our

experiments and hence we consider 3 scenes in [51]. The original image size is

576 ⇥ 768. In our experiments, we resize the images to 288 ⇥ 384 following [52].

• FDST [53]: The FDST dataset is made up of 13 di↵erent camera scenes. The

training set consists of 60 videos resulting in 9000 frames and the testing set

consists of 40 videos resulting in 6000 frames. The dataset contains images of

two di↵erent resolutions (1920⇥ 1080 & 1280⇥ 720). Following [53], we resize

all the frames to 640⇥ 360 in our experiments.

Our problem setup requires data from multiple scenes during the training phase.

To the best of our knowledge, WorldExpo’10 [4] is the only crowd counting dataset

with large number scenes that can be used for training in our problem setup. There-

fore, we use WorldExpo’10 for training and use other datasets to test for scene adap-

tation.

Implementation: We implement AdaCrowd framework with di↵erent backbone

(VGG [33] or ResNet [50]) networks. The learning rate for all the experiments is set

to 1e-5. We use Adam [37] optimizer with gradient clipping norm of 1 and we train

all the models for 110 epochs.

Evaluation Metrics: We use two standard metrics following previous works in

crowd counting [3], [4] to evaluate the performance of our model, namely mean

absolute error (MAE) and root mean squre error (RMSE). Smaller MAE/RMSE

Chapter 4: AdaCrowd: Unlabeled Scene Adaptive Crowd Counting 39

indicates better performance.

4.4.2 Baselines and Backbone Architectures

We consider the following state-of-the-art crowd counting networks as baselines for

comparison. These baselines train the networks in the standard supervised manner

on images available during training, then directly apply the trained networks to test

scenes from di↵erent scenes without adaptation.

• CSRNet [3]: The first sub-network in CSRNet is based on VGG [33] and consists

of layers till conv 4 3 to extract the features with dimension H/8⇥W/8⇥ 512

from the image input. The extracted features are used to construct the density

map using a series of dilated convolutional layers in the second sub-network.

• CSRNet w/ Batch Normalization [3]: This baseline is based on CSRNet. We

add batch normalization layers between every conv and relu layer in the second

sub-network to generate the density map for the input.

• ResNet FCN [20]: This baseline is based on the ResNet101 [50] architecture

to extract the image features with dimension H/8 ⇥W/8 ⇥ 1024. Similar to

CSRNet, we first extract the image features and then generate the density map

using the second sub-network comprising of dilated convolutional layers.

• ResNet FCN w/ Batch Normalization [20]: This baseline is similar to ResNet

FCN. We add batch normalization layers to the density map generator sub-

network like in CSRNet w/ BN.

40 Chapter 4: AdaCrowd: Unlabeled Scene Adaptive Crowd Counting

• ResNet SFCN [20]: This baseline uses ResNet101 [50] for the feature extractor

part of the network. The density map generator consists of dilated convolutional

layers and spatial fully connected layers as proposed in [20].

• ResNet SFCN w/ Batch Normalization [20]: This baseline is based on ResNet

SFCN. We add batch normalization layers in the density map generator like in

other BN based baselines.

We also use CSRNet, ResNet FCN and ResNet SFCN (with GBN layers inserted)

as the backbone architecture in our AdaCrowd framework. To be specific, we can

derive an AdaCrowd variant for each of the BN-based baseline methods by replacing

all BN layers with GBN layers. In our approach, we generate the parameters for the

GBN layers using the guiding network from the unlabeled data z.

Method MAE RMSE

CSRNet [3] 19.56 28.34
CSRNet w/ BN [3] 18.57 29.91
Ours w/ CSRNet 17.32 ±0.1 27.03 ±0.05

FCN [50] 23.07 34.16
FCN w/ BN [50] 21.65 33.3
Ours w/ FCN 20.91 ±0.3 29.61 ±0.2

SFCN [20] 25.47 35.91
SFCN w/ BN [20] 23.84 35.52
Ours w/ SFCN 14.56 ±0.4 22.75 ±0.2

Table 4.1: Quantitative results for training and testing on WorldExpo’10. We report
results using di↵erent backbone architectures. “Ours” correspond to using one unla-
beled image z. The results for our approach show the mean and standard deviation
(%) over 5 random trials. We show the best results in bold.

Chapter 4: AdaCrowd: Unlabeled Scene Adaptive Crowd Counting 41

Method
WorldExpo ! Mall WorldExpo ! PETS WorldExpo ! FDST

MAE RMSE MAE RMSE MAE RMSE

CSRNet [3] 9.94 10.41 17.99 19.80 12.74 13.09

CSRNet w/ BN [3] 8.72 9.92 18.63 20.49 7.30 7.81

Ours w/ CSRNet 4.0 ±0.08 5.0 ±0.09 17.43 ±0.04 19.70 ±0.05 7.14 ±0.3 7.77 ±0.2

FCN [50] 9.03 9.6 20.38 22.67 7.14 7.85

FCN w/ BN [50] 9.63 10.32 19.59 21.61 8.89 9.23

Ours w/ FCN 4.12 ±0.2 5.12 ±0.2 13.74 ±0.1 16.15 ±0.09 6.13 ±0.4 6.69 ±0.3

SFCN [20] 15.17 15.53 19.62 21.55 8.72 8.94

SFCN w/ BN [20] 10.8 11.39 19.94 22.26 6.60 6.96

Ours w/ SFCN 6.99 ±1.2 8.0 ±1.0 18.41 ±0.2 20.63 ±0.1 5.76 ±0.3 6.57 ±0.3

Table 4.2: Quantitative results for the cross-dataset testing for one unlabeled image.
We train WorldExpo’10 and test on Mall, PETS, and FDST. We show results of
di↵erent backbone networks and report mean and standard deviation (%) of our
models over 5 random trials. We show the results in bold.

4.4.3 Experimental Results

Quantitative Results: In Table 4.1, we show the average results of training with

103 scenes and testing on 5 di↵erent scenes on WorldExpo’10. In Table 4.2, we show

the results of training on WorldExpo’10 and testing on other datasets (Mall, PETS

and FDST). As other datasets (Mall, PETS and FDST) have same scenes in both

training and testing, we use unlabeled image from the train set when sampling z and

evaluate the performance on all images from the corresponding test set. We perform

5 trails for each of our models on every dataset with di↵erent data on unlabeled image

z. We report the mean score with the standard deviation (%) in Table 4.1 and 4.2.

In all the cases, our AdaCrowd significantly outperforms other baselines.

Qualitative Results: In Fig. 4.3, we present qualitative examples from di↵erent

datasets. We visualize the predicted density map and the ground-truth count.

Ablation Analysis: We perform additional analysis on the proposed AdaCrowd

42 Chapter 4: AdaCrowd: Unlabeled Scene Adaptive Crowd Counting

WorldExpo’10 Mall PETS FDST

Figure 4.3: Qualitative results of our approach on di↵erent datasets. We visualize the
density maps and show both ground-truth and predicted count at the top-left corner
of each image.

Method
1 input 5 inputs

MAE RMSE MAE RMSE

Ours w/ CSRNet 17.32 ±0.1 27.03 ±0.05 17.21±0.6 26.85 ±0.02

Ours w/ FCN 20.91 ±0.3 29.61 ±0.2 20.88 ±0.2 29.53 ±0.4

Ours w/ SFCN 14.56 ±0.4 22.75 ±0.2 14.47 ±0.4 22.61 ±0.4

Table 4.3: Comparison of our approach with 1 vs. 5 inputs (unlabeled image) by
training and testing on WorldExpo’10. In all the cases, the results of using 5 inputs
are slightly better than using 1 input. We report the mean and standard deviation
(%) for all the methods.

framework to gain further understanding of the proposed approach. In this analysis,

we increase the number of unlabeled images to 5. We show the results of training

and testing on WorldExpo’10 in Table 4.3. In general, increasing the number of

unlabeled data slightly gives better results. One possible explanation is that using

more unlabeled data can make the algorithm more robust to noise.

In Fig. 4.4, we present the analysis on how the performance varies when we vary

Chapter 4: AdaCrowd: Unlabeled Scene Adaptive Crowd Counting 43

Figure 4.4: We present the ablation study on the relation between network perfor-
mance and number of training scenes on WorldExpo’10 dataset with CSRNet and
ResNet SFCN architectures.

Figure 4.5: We provide an overview of some failure cases caused by drastic changes in
the target scene images due to illumination, occlusion or image quality. Nevertheless,
our approach still performs better than alternative methods in these cases.

the number of training scenes. This analysis uses the CSRNet and ResNet SFCN

architectures on the WorldExpo’10 dataset. From the plot, the performance (low

error for MAE and RMSE) is positively correlated with the number of training scenes.

Therefore, AdaCrowd framework performs better at test time if more scenes are

available during training.

44 Chapter 4: AdaCrowd: Unlabeled Scene Adaptive Crowd Counting

In Fig. 4.5, we show some failure cases due to factors such as illumination, occlu-

sion or image quality that have drastic e↵ect in the target scene images. However,

our approach still performs better than other methods in these cases. As future work,

we will explore to incorporate other meta-information (e.g. illumination estimation)

into our framework to deal with these challenging cases.

Chapter 5

Conclusion and Future Work

In this thesis, we have presented e↵ective deep learning approaches for scene-

specific adaptation for crowd counting. More specifically, we have proposed two

adaptation methods to handle both labeled and unlabeled scene-specific data. First,

we have addressed the problem of few-shot scene adaptation for crowd counting. We

have proposed a meta-learning inspired approach to address the learning mechanism

for few-shot scenario. Our proposed approach learns the model parameters in a way

that facilitates fast adaptation to new target scenes. Second, we have introduced

a new problem called the unlabeled scene adaptive crowd counting. Our goal is to

adapt a crowd counting model to a target scene using some unlabeled data from that

scene. We have proposed a novel framework AdaCrowd with GBN layers for solving

this problem. Our proposed approach employs a guiding network to predict GBN

parameters of the crowd counting network based on the unlabeled data of a scene.

The model parameters are learned in a way that allows e↵ective adaptation to new

scenes given their unlabeled data.

45

46 Chapter 5: Conclusion and Future Work

In terms of future direction, we would like to explore the aspects of synthetic to

real-world scene adaptation and multi-task learning by considering additional tasks

to improve the primary crowd counting performance.

Bibliography

[1] M. A. Hossain, M. K. K. Reddy, M. Hosseinzadeh, O. Chanda, and Y. Wang, “One-

shot scene-specific crowd counting,” in British Machine Vision Conference (BMVC),

2019.

[2] M. K. K. Reddy, M. Hossain, M. Rochan, and Y. Wang, “Few-shot scene adaptive

crowd counting using meta-learning,” in IEEE Winter Conference on Applications of

Computer Vision (WACV), 2020.

[3] Y. Li, X. Zhang, and D. Chen, “Csrnet: Dilated convolutional neural networks for

understanding the highly congested scenes,” in IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2018.

[4] C. Zhang, H. Li, X. Wang, and X. Yang, “Cross-scene crowd counting via deep con-

volutional neural networks,” in IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2015.

[5] A. B. Chan, Z.-S. J. Liang, and N. Vasconcelos, “Privacy preserving crowd monitoring:

Counting people without people models or tracking,” in IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2008.

47

48 Bibliography

[6] C. Change Loy, S. Gong, and T. Xiang, “From semi-supervised to transfer counting of

crowds,” in IEEE International Conference on Computer Vision (ICCV), 2013.

[7] A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-learning algorithms,”

arXiv preprint arXiv:1803.02999, 2018.

[8] S. Ravi and H. Larochelle, “Optimization as a model for few-shot learning,” in Inter-

national Conference on Learning Representations (ICLR), 2017.

[9] D. B. Sam, S. Surya, and R. V. Babu, “Switching convolutional neural network for

crowd counting,” in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2017.

[10] V. A. Sindagi and V. M. Patel, “Generating high-quality crowd density maps using

contextual pyramid CNNs,” in IEEE International Conference on Computer Vision

(ICCV), 2017.

[11] Y. Zhang, D. Zhou, S. Chen, S. Gao, and Y. Ma, “Single-image crowd counting via

multi-column convolutional neural network,” in IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2016.

[12] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation

of deep networks,” in International Conference on Machine Learning (ICML), 2017.

[13] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2005.

[14] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: An evaluation of

the state of the art,” IEEE Transactions on Pattern Analysis and Machine Intelligence

(TPAMI), 2012.

Bibliography 49

[15] A. B. Chan and N. Vasconcelos, “Bayesian poisson regression for crowd counting,” in

IEEE International Conference on Computer Vision (ICCV), 2009.

[16] H. Idrees, I. Saleemi, C. Seibert, and M. Shah, “Multi-source multi-scale counting in

extremely dense crowd images,” in IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2013.

[17] V. Lempitsky and A. Zisserman, “Learning to count objects in images,” in Advances

in Neural Information Processing Systems (NeurIPS), 2010.

[18] V.-Q. Pham, T. Kozakaya, O. Yamaguchi, and R. Okada, “Count forest: Co-voting

uncertain number of targets using random forest for crowd density estimation,” in

IEEE International Conference on Computer Vision (ICCV), 2015.

[19] C. C. Loy, K. Chen, S. Gong, and T. Xiang, “Crowd counting and profiling: Method-

ology and evaluation,” in Modeling, Simulation and Visual Analysis of Crowds, 2013.

[20] Q. Wang, J. Gao, W. Lin, and Y. Yuan, “Learning from synthetic data for crowd

counting in the wild,” in IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2019.

[21] D. Kang, D. Dhar, and A. Chan, “Incorporating side information by adaptive convo-

lution,” in Advances in Neural Information Processing Systems (NeurIPS), 2017.

[22] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object categories,” IEEE

Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2006.

[23] B. M. Lake, R. R. Salakhutdinov, and J. Tenenbaum, “One-shot learning by inverting a

compositional causal process,” in Advances in Neural Information Processing Systems

(NeurIPS), 2013.

50 Bibliography

[24] Z. Luo, Y. Zou, J. Ho↵man, and L. F. Fei-Fei, “Label e�cient learning of transfer-

able representations acrosss domains and tasks,” in Advances in Neural Information

Processing Systems (NeurIPS), 2017.

[25] S. Bengio, Y. Bengio, J. Cloutier, and J. Gecsei, “On the optimization of a synap-

tic learning rule,” in Preprints Conf. Optimality in Artificial and Biological Neural

Networks. Univ. of Texas, 1992, pp. 6–8.

[26] J. Schmidhuber, “Evolutionary principles in self-referential learning,” On learning how

to learn: The meta-meta-... hook.) Diploma thesis, Institut f. Informatik, Tech. Univ.

Munich, 1987.

[27] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for one-shot image

recognition,” in International Conference on Machine Learning (ICML), 2015.

[28] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot learning,” in

Advances in Neural Information Processing Systems (NeurIPS), 2017.

[29] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. S. Torr, and T. M. Hospedales, “Learning

to compare: Relation network for few-shot learning,” in IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2018.

[30] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al., “Matching networks for one

shot learning,” in Advances in Neural Information Processing Systems (NeurIPS),

2016.

[31] T. Munkhdalai and H. Yu, “Meta networks,” in International Conference on Machine

Learning (ICML), 2017.

Bibliography 51

[32] A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap, “Meta-learning

with memory-augmented neural networks,” in International Conference on Machine

Learning (ICML), 2016.

[33] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” CoRR, vol. abs/1409.1556, 2014.

[34] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,” in

International Conference on Learning Representations (ICLR), 2016.

[35] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale

hierarchical image database,” in IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2009.

[36] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,

L. Antiga, and A. Lerer, “Automatic di↵erentiation in pytorch,” in Advances in Neural

Information Processing Systems Workshop (NeurIPSW), 2017.

[37] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Interna-

tional Conference on Learning Representations (ICLR), 2015.

[38] Z.-Q. Cheng, J.-X. Li, Q. Dai, X. Wu, and A. G. Hauptmann, “Learning spatial aware-

ness to improve crowd counting,” in IEEE International Conference on Computer Vi-

sion (ICCV), 2019.

[39] D. Kang and A. Chan, “Crowd counting by adaptively fusing predictions from an image

pyramid,” in British Machine Vision Conference (BMVC), 2018.

[40] Z. Ma, X. Wei, X. Hong, and Y. Gong, “Bayesian loss for crowd count estimation with

52 Bibliography

point supervision,” in IEEE International Conference on Computer Vision (ICCV),

2019.

[41] D. B. Sam, N. N. Sajjan, H. Maurya, and R. V. Babu, “Almost unsupervised learning

for dense crowd counting,” in AAAI Conference on Artificial Intelligence (AAAI),

2019.

[42] V. A. Sindagi and V. M. Patel, “Cnn-based cascaded multi-task learning of high-level

prior and density estimation for crowd counting,” in IEEE International Conference

on Advanced Video and Signal-based Surveillance (AVSS). IEEE, 2017.

[43] E. Walach and L. Wolf, “Learning to count with cnn boosting,” in The European

Conference on Computer Vision (ECCV). Springer, 2016.

[44] J. Wan and A. Chan, “Adaptive density map generation for crowd counting,” in IEEE

International Conference on Computer Vision (ICCV), 2019.

[45] M. Long, Y. Cao, J. Wang, and M. I. Jordan, “Learning transferable features with

deep adaptation networks,” in International Conference on Machine Learning (ICML),

2015.

[46] M. Long, H. Zhu, J. Wang, and M. I. Jordan, “Deep transfer learning with joint adap-

tation networks,” in International Conference on Machine Learning (ICML), 2017.

[47] S. Io↵e and C. Szegedy, “Batch normalization: Accelerating deep network training by

reducing internal covariate shift,” in International Conference on Machine Learning

(ICML), 2015.

[48] H. De Vries, F. Strub, J. Mary, H. Larochelle, O. Pietquin, and A. C. Courville,

Bibliography 53

“Modulating early visual processing by language,” in Advances in Neural Information

Processing Systems (NeurIPS), 2017.

[49] M.-Y. Liu, X. Huang, A. Mallya, T. Karras, T. Aila, J. Lehtinen, and J. Kautz, “Few-

shot unsupervised image-to-image translation,” in IEEE International Conference on

Computer Vision (ICCV), 2019.

[50] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[51] J. Ferryman and A. Shahrokni, “Pets2009: Dataset and challenge,” in IEEE Interna-

tional workshop on performance evaluation of tracking and surveillance, 2009.

[52] Q. Zhang and A. B. Chan, “Wide-area crowd counting via ground-plane density maps

and multi-view fusion cnns,” in IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2019.

[53] Y. Fang, B. Zhan, W. Cai, S. Gao, and B. Hu, “Locality-constrained spatial transformer

network for video crowd counting,” in IEEE International Conference on Multimedia

and Expo (ICME), 2019.

